Difference between revisions of "Gyro"

(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
The '''Gyro''' is an internal component of all [[BattleMech]]s, [[IndustrialMech]]s and [[OmniMech]]s. The gyro is required to help establish balance and, in times of imbalance, prevent the 'Mech from falling.
+
The '''Gyroscope''' often simply called the '''Gyro''' is an internal component mounted within all [[BattleMech]]s, [[IndustrialMech]]s and [[OmniMech]]s. The gyro is required to help establish balance and, in times of imbalance, prevent the 'Mech from falling.
  
==Balance==
+
== Balance ==
The gyro is be able to help establish center-of-mass equilibrium for the BattleMech in a variety of environments. In normal or high gravity, at least one full set of accelerometers is used. Since accelerometers experience little acceleration in low-G environments, gyros should also possess a traditional gyroscope for direction sense, as piloting in zero-G is not inherently more difficult than in normal or high gravity (see '''Note''').<ref>''Total Warfare'', pp. 59-61</ref><ref>''Tactical Operations'', pp. 23-24</ref><ref>''Strategic Operations'', pp. 119-120</ref><ref>[[w:gyroscope|gyroscope]]</ref> Neither accelerometers nor rudimentary gyroscopes require extensive amounts of space or mass within the BattleMech.<ref name=TM34>''TechManual'', pp.34-35</ref>
+
The gyro helps establish center-of-mass equilibrium for the BattleMech in a variety of environments. In normal or high gravity, at least one full set of accelerometers is used. Since accelerometers experience little acceleration in low-G environments, gyros should also possess a traditional gyroscope for direction sense, as piloting in zero-G is not inherently more difficult than in normal or high gravity (see '''Notes''').<ref name="TWp59+">''Total Warfare'', pp. 59-61, "Piloting/Driving Skill Rolls"</ref><ref name="TOp23+">''Tactical Operations'', pp. 23-24, "Piloting Skill Rolls"</ref><ref name="SOp119+">''Strategic Operations'', pp. 119-120, "Zero-G Ground Unit Combat"</ref><ref>[[w:gyroscope|gyroscope]]</ref> Neither accelerometers nor rudimentary gyroscopes require extensive space or mass within the BattleMech.<ref name="TMp34+">''TechManual'', pp. 34-35, "Gyroscope"</ref>
  
However, gyroscopic orientation-sensing and accelerometer feedback is not enough to maintain control of the 'Mech.  Accelerometers and gyroscopes can not distinguish between intentional and hazardous changes in acceleration or direction, for instance the jerk felt when accelerating from standing to running, or the sudden change of mass due to a lost limb.  In these situations, the MechWarrior's own equilibrium is monitored by a [[Neurohelmet]] and utilized by the gyro's computer. In the event both the MechWarrior and the balance-sensing mechanisms of the BattleMech agree, the gyro attempts to stabilize the machine.<ref name=TM34/>
+
However, gyroscopic orientation-sensing and accelerometer feedback is insufficient to maintain control of the 'Mech.  Accelerometers and gyroscopes can not distinguish between intentional and hazardous changes in acceleration or direction, for instance the jerk felt when accelerating from standing to running or the sudden change of mass due to a lost limb, respectivelyTo distinguish between intent and peril, the MechWarrior's own equilibrium is monitored by a [[Neurohelmet]] connected to the gyro's computer. If both the MechWarrior's equilibrium and the balance-sensing mechanisms of the BattleMech agree, the gyro attempts to stabilize the machine.<ref name="TMp34+"/>
  
==Angular Acceleration==
+
== Angular Acceleration ==
The BattleMech gyro is able to assist with correcting falls through interactions with massive, rotating wheels, likened to "reaction wheels".  Multiple wheels spin continuously within the active 'Mech, with 1 or more stabilizing a different axis, x, y, or z. In the event both the gyro and the pilot's neurohelmet interface detect an imbalance, the gyro will attempt to correct the imbalance by gripping wheels on one or more axes, feeding off their immense angular momentum by pulling or pushing against their spin. The resulting change in angular acceleration is often enough to stabilize the 'Mech.<ref name=TM34/>
+
The BattleMech gyro is able to assist with correcting falls through interactions with massive, rotating wheels, likened to "reaction wheels".  Multiple wheels spin continuously within the active 'Mech, with 1 or more stabilizing each axis, x, y, or z. In the event both the gyro and the pilot's neurohelmet interface detect an imbalance, the gyro will attempt to correct the imbalance by gripping one or more wheels, feeding off their immense angular momentum by pulling or pushing against their spin. The resulting torque is often sufficient to stabilize the 'Mech.<ref name="TMp34+"/>
  
Continuously maintaining large angular momenta requires the gyro to be constructed in one of two ways in order to counteract undesired gyroscopic effects. Gyros can be housed in a freely moving sphere - the sphere is immobilized in moments of imbalance. Alternatively, multiple wheels can stabilize each axis, their net angular momentum equaling 0 about each axis.<ref name=TM34/>
+
However, utilizing angular momentum in this fashion is inherently fraught. In order to counteract undesired gyroscopic effects and allow the 'Mech to operate normally, the constant motion of the gyro's "reaction wheels" requires the gyro is constructed in one of two ways. Gyros can be housed in a freely moving concentric spheres. The sphere(s) itself is immobilized only in moments of imbalance. Alternatively, each axis can be stabilized by multiple wheels spinning in opposite directions. If the net angular momentum about each axis equals 0, the 'Mech will be able to move properly.<ref name="TMp34+"/>
  
While these gyro's wheels have been likened to [[w:Reaction_wheel|Reaction wheels]], this analogy is not quite true. Traditional reaction wheels are set in motion in order to fix an orientation on an axis by [[w:Conservation_of_angular_momentum|conservation of angular momentum]].
+
While the wheels within the gyro have been likened to [[w:Reaction_wheel|Reaction wheels]], this analogy is false. Traditional reaction wheels are set in motion in order to fix an orientation on an axis by [[w:Conservation_of_angular_momentum|conservation of angular momentum]]. In contrast, torquing against the gyro's "reaction wheels" rectifies the 'Mech's imbalance by adding [[w:Angular_acceleration|angular acceleration]].
  
==Note==
+
== Size ==
While low-Gravity environments can alter ballistic trajectories, there is no mention of low-G or zero-G impairing 'Mech operation in ''[[Total Warfare]]'', ''[[Tactical Operations]]'', or ''[[Strategic Operations]]''.
+
Standard gyros were developed for IndustrialMechs and have changed little since the ''[[Mackie]]'' was introduced<ref name="TMp219+">''TechManual'', pp. 219-220, "Gyros"</ref>. All standard gyros take up ~1/3 of the center torso's space. A one-ton gyro taking one-third of the center torso is sufficient to correct imbalances in a BattleMech massing up to 100 tons and moving up to ~22 kph. However, higher-velocity maneuvers often require more torque, because MechWarriors or pilots will often add to the imbalance with their own maneuvers. The same 100-ton BattleMech would require an equally bulky four-ton gyro to oppose an imbalance at a velocity of ~65 kph (see '''Notes'''). Maximum momentum of a 'Mech also determines engine output, so gyros are frequently proportional to the engine-rating.<ref name="TMp48+">''TechManual'', pp. 48-50, "Install Engines And Control Systems"</ref>
  
==References==
+
Gyros utilizing newer construction materials and/or design philosophies became available in the late 3060s. These differ in mass, bulk, and armor of the components, but are equally effective at re-establishing equilibrium. Compact gyros are condensed, requiring more mass to achieve the same [[w:Moment_of_inertia|moment of inertia]] due to their smaller size. Heavy-duty gyros provide redundancy and provide more protection. Extra-light gyros trade mass for bulk in their "reaction wheels". The improved materials of an XL gyro are much lighter and can manage stresses better than standard gyros, allowing them to increase their moments of inertia and angular velocity in order to provide equal torque.<ref name="TMp219+"/><ref name="TMp48+"/>
 +
 
 +
== Notes ==
 +
* While low-Gravity environments can alter ballistic trajectories, there is no mention of low-G or zero-G impairing 'Mech operation in ''[[Total Warfare]]'', ''[[Tactical Operations]]'', or ''[[Strategic Operations]]''.
 +
 
 +
* Gyro corrections torque against a 'Mech's momentum. Some BattleMechs with [[Myomer Accelerator Signal Circuitry]]<ref name="TMp232">''TechManual'', p. 232, "Myomer Accelerator Signal Circuitry (MASC)"</ref>, [[Triple-Strength Myomer]]<ref name="TMp240">''TechManual'', p. 240, "Triple-Strength Myomer"</ref>, and [[Supercharger]]s<ref name="TOp345">''Tactical Operations'', p. 345</ref> can reach much greater momentum, and therefore should require more massive gyros. However, this is not mentioned in the rules.
 +
 
 +
{{ApocryphalContentStart}}
 +
These data was introduced in a apocryphal source, and thus far has not appeared in any canonical media.
 +
==BattleMech Gyroscope Models==
 +
{| class="wikitable"
 +
! Brand
 +
! Planet
 +
! Company
 +
! Used by
 +
! References
 +
|-
 +
| Coventry Mark 75
 +
|
 +
| [[Coventry Metal Works]]
 +
|
 +
| <ref name=BTVG>"BattleTech Video Game", Equpiment</ref>
 +
|-
 +
| Coventry Mark 85
 +
|
 +
| Coventry Metal Works
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
| Coventry Mark 95
 +
|
 +
| Coventry Metal Works
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
| Friedhof Osprey
 +
|
 +
| [[Friedhof]]
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
| Friedhof Kite
 +
|
 +
| Friedhof
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
| Friedhof Sparrow
 +
|
 +
| Friedhof
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
| Rawlings StabiliTrak 5
 +
|
 +
| [[Rawlings]]
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
| Rawlings StabiliTrak 10
 +
|
 +
| Rawlings
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
| Rawlings StabiliTrak 15
 +
|
 +
| Rawlings
 +
|
 +
| <ref name=BTVG/>
 +
|-
 +
|}
 +
{{ApocryphalContentEnd}}
 +
 
 +
== References ==
 
<references />
 
<references />
  
==Bibliography==
+
== Bibliography ==
*''[[TechManual]]'', pp. 34-35
+
* ''[[BattleTech (Video Game)|BattleTech]] (Video Game)
 +
* ''[[Strategic Operations]]''
 +
* ''[[Tactical Operations]]''
 +
* ''[[TechManual]]''
 +
* ''[[Total Warfare]]''
  
 +
[[Category: Technology]]
 
[[Category: Gyros]]
 
[[Category: Gyros]]
[[Category: Technology]]
 

Revision as of 09:40, 13 May 2018

The Gyroscope often simply called the Gyro is an internal component mounted within all BattleMechs, IndustrialMechs and OmniMechs. The gyro is required to help establish balance and, in times of imbalance, prevent the 'Mech from falling.

Balance

The gyro helps establish center-of-mass equilibrium for the BattleMech in a variety of environments. In normal or high gravity, at least one full set of accelerometers is used. Since accelerometers experience little acceleration in low-G environments, gyros should also possess a traditional gyroscope for direction sense, as piloting in zero-G is not inherently more difficult than in normal or high gravity (see Notes).[1][2][3][4] Neither accelerometers nor rudimentary gyroscopes require extensive space or mass within the BattleMech.[5]

However, gyroscopic orientation-sensing and accelerometer feedback is insufficient to maintain control of the 'Mech. Accelerometers and gyroscopes can not distinguish between intentional and hazardous changes in acceleration or direction, for instance the jerk felt when accelerating from standing to running or the sudden change of mass due to a lost limb, respectively. To distinguish between intent and peril, the MechWarrior's own equilibrium is monitored by a Neurohelmet connected to the gyro's computer. If both the MechWarrior's equilibrium and the balance-sensing mechanisms of the BattleMech agree, the gyro attempts to stabilize the machine.[5]

Angular Acceleration

The BattleMech gyro is able to assist with correcting falls through interactions with massive, rotating wheels, likened to "reaction wheels". Multiple wheels spin continuously within the active 'Mech, with 1 or more stabilizing each axis, x, y, or z. In the event both the gyro and the pilot's neurohelmet interface detect an imbalance, the gyro will attempt to correct the imbalance by gripping one or more wheels, feeding off their immense angular momentum by pulling or pushing against their spin. The resulting torque is often sufficient to stabilize the 'Mech.[5]

However, utilizing angular momentum in this fashion is inherently fraught. In order to counteract undesired gyroscopic effects and allow the 'Mech to operate normally, the constant motion of the gyro's "reaction wheels" requires the gyro is constructed in one of two ways. Gyros can be housed in a freely moving concentric spheres. The sphere(s) itself is immobilized only in moments of imbalance. Alternatively, each axis can be stabilized by multiple wheels spinning in opposite directions. If the net angular momentum about each axis equals 0, the 'Mech will be able to move properly.[5]

While the wheels within the gyro have been likened to Reaction wheels, this analogy is false. Traditional reaction wheels are set in motion in order to fix an orientation on an axis by conservation of angular momentum. In contrast, torquing against the gyro's "reaction wheels" rectifies the 'Mech's imbalance by adding angular acceleration.

Size

Standard gyros were developed for IndustrialMechs and have changed little since the Mackie was introduced[6]. All standard gyros take up ~1/3 of the center torso's space. A one-ton gyro taking one-third of the center torso is sufficient to correct imbalances in a BattleMech massing up to 100 tons and moving up to ~22 kph. However, higher-velocity maneuvers often require more torque, because MechWarriors or pilots will often add to the imbalance with their own maneuvers. The same 100-ton BattleMech would require an equally bulky four-ton gyro to oppose an imbalance at a velocity of ~65 kph (see Notes). Maximum momentum of a 'Mech also determines engine output, so gyros are frequently proportional to the engine-rating.[7]

Gyros utilizing newer construction materials and/or design philosophies became available in the late 3060s. These differ in mass, bulk, and armor of the components, but are equally effective at re-establishing equilibrium. Compact gyros are condensed, requiring more mass to achieve the same moment of inertia due to their smaller size. Heavy-duty gyros provide redundancy and provide more protection. Extra-light gyros trade mass for bulk in their "reaction wheels". The improved materials of an XL gyro are much lighter and can manage stresses better than standard gyros, allowing them to increase their moments of inertia and angular velocity in order to provide equal torque.[6][7]

Notes

Apocryphal Content Starts

The information after this notice comes from apocryphal sources; the canonicity of such information is uncertain.
Please view the reference page for information regarding their canonicity.

These data was introduced in a apocryphal source, and thus far has not appeared in any canonical media.

BattleMech Gyroscope Models

Brand Planet Company Used by References
Coventry Mark 75 Coventry Metal Works [11]
Coventry Mark 85 Coventry Metal Works [11]
Coventry Mark 95 Coventry Metal Works [11]
Friedhof Osprey Friedhof [11]
Friedhof Kite Friedhof [11]
Friedhof Sparrow Friedhof [11]
Rawlings StabiliTrak 5 Rawlings [11]
Rawlings StabiliTrak 10 Rawlings [11]
Rawlings StabiliTrak 15 Rawlings [11]

Apocryphal Content Ends

References

  1. Total Warfare, pp. 59-61, "Piloting/Driving Skill Rolls"
  2. Tactical Operations, pp. 23-24, "Piloting Skill Rolls"
  3. Strategic Operations, pp. 119-120, "Zero-G Ground Unit Combat"
  4. gyroscope
  5. 5.0 5.1 5.2 5.3 TechManual, pp. 34-35, "Gyroscope"
  6. 6.0 6.1 TechManual, pp. 219-220, "Gyros"
  7. 7.0 7.1 TechManual, pp. 48-50, "Install Engines And Control Systems"
  8. TechManual, p. 232, "Myomer Accelerator Signal Circuitry (MASC)"
  9. TechManual, p. 240, "Triple-Strength Myomer"
  10. Tactical Operations, p. 345
  11. 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 "BattleTech Video Game", Equpiment

Bibliography